Equilibria, Energetics and Elements Acids, Bases \& Buffers

1. (i) $\mathrm{H}^{+} /$proton donor (1) 1
(ii) partially dissociates/ionises (1) 1
2. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
acid 1 base 2 base 1 acid 2 (1)
3. (i) $K_{\mathrm{a}}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})\right]$ (1)
(ii) $\quad M_{\mathrm{r}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}=94$ (1)
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})\right] 4.7 / 94=0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$1.3 \times 10^{-10} \approx\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} / 0.050 \mathrm{~mol} \mathrm{dm}{ }^{-3}(\mathbf{1})\left({ }^{‘}=\right.$ ' sign is acceptable)
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left\{\left(1.3 \times 10^{-10}\right) \times(0.050)\right\}=2.55 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})$
$\mathrm{pH}=-\log [\mathrm{H}+]=-\log 2.55 \times 10^{-6}=5.59(1)$
3 marks: $\left[\mathrm{H}^{+}\right]$; pH expression ; calc of pH from $\left[\mathrm{H}^{+}\right]$
4. $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.99 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})\right]=K_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})\right] /\left[\mathrm{H}^{+}(\mathrm{aq})\right](\mathbf{1})$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})\right]=0.13 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
Calculation should use half the original concentration of phenol to find the concentration of sodium phenoxide in the buffer. This should then be doubled back up again.
Do not penalise an approach that uses the original concentration of phenol in the expression above.
5. (a) (i) Ionic product (1) 1
(ii) $\quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right](1)$ state symbols not needed 1
(b) moles of $\mathrm{HCl}=\frac{5 \times 10^{-3} \times 21.35}{1000}=1.067 \times 10^{-4} \mathrm{~mol}(\mathbf{1})$
moles of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{1.067 \times 10^{4}}{2}=5.34 \times 10^{-5} \mathrm{~mol}(\mathbf{1})$
concentration of $\mathrm{Ca}(\mathrm{OH})_{2}=40 \times 5.34 \times 10^{-5}$

$$
=2.136 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})
$$

2 marks for $4.27 \times 10^{-3} / 8.54 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
(no factor of 4)
(c) $\left[\mathrm{OH}^{-}\right]=2 \times 2.7 \times 10^{-3}=5.4 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{5.4 \times 10^{-3}}=1.85 \times 10^{-12} \mathrm{~mol} \mathrm{dm}{ }^{-3}(\mathbf{1})$
$\mathrm{pH}=-\log \left(1.85 \times 10^{-12}\right)=11.73 / 11.7$ (1)
ecf is possible for pH mark providing that the $\left[\mathrm{H}^{+}\right]$
value has been derived from $K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$
If pOH method is used, $\mathrm{pOH}=2.27$. would get $1^{\text {st }}$ mark, $\mathrm{pH}=14-2.27=11.73$ gets $2^{\text {nd }}$ mark.
Commonest mistake will be to not double OH^{--}and to use 2.7×10^{-3} This gives ecf answer of $11.43 / 11.4$, worth 2 marks.
$\mathrm{pH}=11.13$ from dividing by 2 : worth 2 marks
(d) 8 (1)
6. (a) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+2 \mathrm{CaSO}_{4}$ (1)
(b) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) /$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})(\mathbf{1})$
(or equivalent with $\mathrm{H}_{2} \mathrm{O}$ forming $\mathrm{H}_{3} \mathrm{O}^{+}$)
(c) (i) $\mathrm{HPO}_{4}{ }^{2-}$ (1)
(ii) $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathbf{1}) \quad 1$
(iii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$produced $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ or on LHS of an attempted equilibrium equation (1)
2 equations/equilibria to shown action of buffer (1)(1) from:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4} /$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{HPO}_{4}{ }^{2-} /$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}$
7. proton donor
partially dissociates
8. $K_{a}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]} / \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} /\left[\mathrm{H}^{+}\right]=\sqrt{ }(\mathrm{Ka} \times[\mathrm{HA}]) /$ $1.58 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.025} / \checkmark$
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left\{\left(1.58 \times 10^{-4}\right) \times(0.025)\right\}=1.99 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.99 \times 10^{-3}=2.70$
5.4034 (no square root) with working would score 1 mark.
9. (i) A solution that minimises pH changes $/$ resists pH changes/opposes pH changes
(not pH is kept constant/pH maintained/pH cancelled out.
(ii) $\mathrm{HCOONa} / \mathrm{HCOO}^{-} / \mathrm{NaOH}$
HCOO^{-}is the conjugate base/
HCOONa is the salt of the weak acid or $\mathrm{HCOOH} /$
HCOONa supplies HCOO^{-}
(iii) Two points from:
$\mathrm{Ka} / \mathrm{pKa}$ /acid strength/amount of dissociation temperature \checkmark (but not "temperature \& pressure") ratio/amounts/concentrations of weak acid and conjugate base/salt \checkmark (or reverse ratio)
(not concentration of base as it could imply NaOH)
10. Mass of $\mathrm{HNO}_{3}=\frac{1400 \times 65}{100} / 910 \mathrm{~g} \checkmark$

Moles of $\mathrm{HNO}_{3}=\frac{910}{63}=14.4 \checkmark$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 14.4=-1.16 / 1.2 \quad$ calc -1.15836
pH from ignoring $65 \% \mathrm{pH}=-1.35$: with working, 2 marks.
11. \rightarrow \qquad $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Complete correct balanced equation for 2 nd mark:
$2 \mathrm{HNO}_{3}+\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} /$
$2 \mathrm{H}++\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} /$
$2 \mathrm{H}^{+}+\mathrm{CO}^{2-}{ }_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
12. Two species differing by $\mathrm{H}^{+} \ldots \mathrm{AW} \checkmark$
one pair: $\quad \mathrm{HNO}_{3}$ and NO_{3}^{-}
other pair: HCOOH and $\mathrm{HCOOH}_{2}{ }^{+} \checkmark$
13. moles of $\mathrm{NaOH}=\frac{0.1263 \times 23.75}{1000} / 3.00 \times 10^{-3} \mathrm{~mol}$
moles of acid $=3.00 \times 10^{-3} \mathrm{~mol} \checkmark$
moles of acid in flask $=10 \times 3.00 \times 10^{-3}=3.00 \times 10^{-2} \mathrm{~mol}$
molar mass of compound $=\frac{\text { mass }}{\mathrm{n}}=\frac{2.58}{3.00 \times 10^{-2}}=86 \checkmark 4$

Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
A 4 carbon carboxylic acid
(e.g. butanoic acid) shown (bod)

Any 2 possible isomers $\checkmark \checkmark$ from:
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{COOH}$
cis $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$
trans $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$
Accept structural formulae that are unambiguous.
14. (a) partial dissociation: $\mathrm{HCOOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCOO}^{-}$(1)
(b) (i) $\mathrm{pH}=-\log \left(1.55 \times 10^{-3}\right)=2.81 / 2.8$ (1)
$\left[\mathrm{H}^{+}\right]$deals with negative indices over a very wide range/ pH makes numbers manageable
$/$ removes very small numbers (1)
(ii) $\quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{HCOO}^{-}(\mathrm{aq})\right]}{[\mathrm{HCOOH}(\mathrm{aq})]}$ (1) (state symbols not needed)
(iii) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}}{[\mathrm{HCOOH}(\mathrm{aq})]}=\frac{\left(1.55 \times 10^{-3}\right)^{2}}{0.015}$ (1)
$=1.60 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathbf{1})$
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(1.60 \times 10^{-4}\right)=3.80(\mathbf{1})$
(iv) Percentage dissociating $=\frac{\left(1.55 \times 10^{-3}\right) \times 100}{0.015}=10.3 \% /$ 10\% (1)
(working not required)
15. (i) $\mathrm{HCOOH}+\mathrm{NaOH} \rightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O}$ (1)
(ii) $\mathrm{n}(\mathrm{HCOOH})=0.0150 \times 25.00 / 1000=3.75 \times 10^{-4}(\mathbf{1})$
volume of $\mathrm{NaOH}(\mathrm{aq})$ that reacts is $30 \mathrm{~cm}^{3}$ (1)
so $[\mathrm{NaOH}]=3.75 \times 10^{-4} \times 1000 / 30=0.0125 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
(iii) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ (1)
$\mathrm{pH}=-\log \left(1 \times 10^{-14} / 0.0125\right)=12.10 / 12.1$ (1)
(calc 12.09691001)
(iv) metacresol purple (1)
pH range coincides with pH change during sharp rise OR pH 6-10/coincides with equivalence point/end point (1)
16. (a) strength of acid/extent of dissociation/ionisation (1)
(b) (i) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}(\mathrm{aq})$ acid $1 \quad$ base 2 (1) base $1 \quad$ acid 2 (1)

1 mark for labels on each side of equation
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$ is the stronger acid/
$K_{\mathrm{a}} \mathrm{CH}_{3} \mathrm{COOH}$ is greater/
$\mathrm{CH}_{3} \mathrm{COOH}$ is more acidic ORA (1)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{2}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})(\mathbf{1}) \quad 2
$$

(c) For $\mathrm{HCl}, \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$(1) (or with values).

Could be awarded below
$=-\log 0.045=1.35(\mathbf{1})($ accept 1.3)
For $\mathrm{CH}_{3} \mathrm{COOH},\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\right) /$
$\sqrt{ }\left(1.70 \times 10^{-5} \times 0.045\right)(\mathbf{1})$
$\left[\mathrm{H}^{+}\right]=8.75 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathbf{(1)}$
$\mathrm{pH}=-\log 8.75 \times 10^{-4}=3.058 / 3.06(\mathbf{1})($ accept 3.1$)$
17. HCl and $\mathrm{CH}_{3} \mathrm{COOH}$ have same number of moles/ release same number of moles H^{+}/
1 mole of each acid produce $1 / 2$ mol of H_{2} (1)
$\left[\mathrm{H}^{+}\right]$in $\mathrm{CH}_{3} \mathrm{COOH}<\left[\mathrm{H}^{+}\right]$in $\mathrm{HCl} /$
$\mathrm{CH}_{3} \mathrm{COOH}$ is a weaker acid than HCl (ora) (1)
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}(\mathbf{1})$
$\mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}(\mathbf{1})$
or
$\mathrm{Mg}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2}(\mathbf{1})(\mathbf{1})$
18. amount of NaOH in titration $=0.175 \times 22.05 / 1000$
or 3.86×10^{-3} (1) (calc: 3.85875×10^{-3})
amount of \mathbf{A} in $25.0 \mathrm{~cm}^{3}=0.5 \times \mathrm{mol} \mathrm{NaOH}$
or $1.93 \times 10^{-3} \mathbf{(1)}$ (calc: 1.929375×10^{-3})
amount of \mathbf{A} in $250 \mathrm{~cm}^{3}=10 \times 1.93 \times 10^{-3}$ or $1.93 \times 10^{-2}(\mathbf{1})$
$1.93 \times 10^{-2} \mathrm{~mol} \mathbf{A}$ has a mass of 2.82 g
molar mass of $\mathbf{A}=2.82 / 1.93 \times 10^{-2}=146 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1})$
(or M_{r} of \mathbf{A} is 146)
Therefore \mathbf{A} is adipic acid $/ \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ (1)
19. (i) proton donor (1) 1
(ii) partially dissociates (1) 1
20. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
acid $1 \quad$ base 2 (1) base $1 \quad$ acid 2 (1)
1 mark for each acid-base pair
21. (i) $K_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}$
(1)
(ii) concentration $=38 / 94(\mathbf{1})=0.40 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
(first mark for M_{r} of phenol - incorrect answer here will give ecffor remainder of question)

$$
\begin{array}{r}
1.3 \times 10^{-10} \approx \frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}}{0.40}(\mathbf{1}) \\
\quad\left({ }^{\prime}=\text { 'sign is acceptable }\right)
\end{array}
$$

$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left\{\left(1.3 \times 10^{-10}\right) \times(0.40)\right\}=7.2 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 7.2 \times 10^{-6}=5.14$ (1)
3 marks: $\left[\mathrm{H}^{+}\right]$(1); pH expression (1); calc of pH from $\left[\mathrm{H}^{+}\right]$(1)

Common errors:

Without square root, answer $=10.28 \mathbf{(1) (1) (0)}$
Use of 38 as molar concentration does not score $1^{\text {st }} 2$ marks.
This gives an answer of 4.15 for 3 marks (1)(1)(1)
22.

$/ \mathrm{NaOH} / \mathrm{Na}(\mathbf{1})$
weak acid/base pair mixture formed (1)
On structure, 1 mark for O Na on either or both phenol groups.
23. (i) completely dissociates/ionised (1) proton donor (1)
(ii) $\mathrm{NO}_{3}^{-}{ }^{(1)}$
24. (i) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] /-\log (0.015)(\mathbf{1})=1.82 / 1.8$ (1) (Not 2)
(ii) $\quad\left[\mathrm{H}^{+}\right]=0.0075 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log (0.0075)=2.12 / 2.1$ (1)
25. (i) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ (1)
(ii) $\quad\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-13.54}=2.88 / 2.9 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})$
$[\mathrm{NaOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$
$=0.347 / 0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
26. (i) a solution that minimises/resists/opposes pH changes (1)
(ii) The buffer must contain both $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ /
$\mathrm{CH}_{3} \mathrm{COO}^{-} /$weak acid and conjugate base(*) (1)
Solution \mathbf{A} is a mixture of $\mathrm{CH}_{3} \mathrm{COOH}\left({ }^{*}\right)$ and $\mathrm{CH}_{3} \mathrm{COONa}\left({ }^{*}\right)$ /
/ has an excess of acid /is acidic (1)
Solution B, contains only $\mathrm{CH}_{3} \mathrm{COONa}$ / only $\mathrm{CH}_{3} \mathrm{COO}^{-}$ /only the salt/ is neutral (1)
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) /$
acid/alkali has been neutralised/
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and NaOH react together (1) 4
[5]
27. $\left[\mathrm{H}^{+}\right]$increases (1)
$\mathrm{H}_{2} \mathrm{O}$ ionises more /
for $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$, equilibrium moves to the right (1) 2 exolendo is 'noise'

